Lp-dual affine surface areas for the general Lp-intersection bodies
نویسندگان
چکیده
منابع مشابه
Lp-dual geominimal surface areas for the general Lp-intersection bodies
For 0 < p < 1, Haberl and Ludwig defined the notions of symmetric and asymmetric Lp-intersection bodies. Recently, Wang and Li introduced the general Lp-intersection bodies. In this paper, we give the Lp-dual geominimal surface area forms for the extremum values and Brunn-Minkowski type inequality of general Lp-intersection bodies. Further, combining with the Lp-dual geominimal surface areas, w...
متن کاملOn Lp-affine surface areas
Let K be a convex body in Rn with centroid at 0 and B be the Euclidean unit ball in Rn centered at 0. We show that limt→0 |K| − |Kt| |B| − |Bt| = Op(K) Op(B) , where |K| respectively |B| denotes the volume of K respectively B, Op(K) respectively Op(B) is the p-affine surface area of K respectively B and {Kt}t≥0, {Bt}t≥0 are general families of convex bodies constructed from K, B satisfying cert...
متن کاملINTERSECTION BODIES AND Lp-SPACES
In this talk we discuss a new connection between convex geometry and the theory of Lp-spaces. It appears that intersection bodies, one the main objects of convex geometry, are directly related to the concept of embedding of normed spaces in Lp with p < 0. This allows to get new geometric results by extending different facts about Lp-spaces to negative values of p. We present several application...
متن کاملRényi Divergence and Lp-affine surface area for convex bodies
We show that the fundamental objects of the Lp-Brunn-Minkowski theory, namely the Lp-affine surface areas for a convex body, are closely related to information theory: they are exponentials of Rényi divergences of the cone measures of a convex body and its polar. We give geometric interpretations for all Rényi divergences Dα, not just for the previously treated special case of relative entropy ...
متن کاملDUAL Lp AFFINE ISOPERIMETRIC INEQUALITIES
Corresponding to each convex (or more general) subset of n-dimensional Euclidean space, Rn, there is a unique ellipsoid with the following property. The moment of inertia of the ellipsoid and the moment of inertia of the convex set are the same about every 1-dimensional subspace of Rn. This ellipsoid is called the Legendre ellipsoid of the convex set. The Legendre ellipsoid is a well-known conc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2019
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1914421z